Gait and motion analysis

Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities.

OBJECTIVE:  To compare peak vertical force (PVF) and vertical impulse (VI) data collected with one and two force plates during the same collection time period in healthy dogs at a trot.

Factors that contribute to variance in ground reaction forces (GRF) include dog morphology, velocity, and trial repetition. Narrow velocity ranges are recommended to minimize variance. In a heterogeneous population of clinically normal dogs, it was hypothesized that the dog subject effect would account for the majority of variance in peak vertical force (PVF) and vertical impulse (VI) at a trotting gait, and that narrow velocity ranges would be associated with less variance.

Physical orthopaedic examination in cats does not always reveal signs of lameness and no objective gait analysis method has yet been standardised for use in cats. The aims of the present study were to define appropriate parameters for pressure mat analyses during walk and jump, and to define reference values for gait parameters of healthy cats. Further, the distribution of the vertical force within the paws and the influence of a non-centred head position were investigated.