Efficacy of virtual surgical planning and a three-dimensional-printed, patient-specific reduction system to facilitate alignment of diaphyseal tibial fractures stabilized by minimally invasive plate osteosynthesis in dogs: A prospective clinical study

Logan M Scheuermann, Daniel D Lewis, Matthew D Johnson, Adam H Biedrzycki, Stanley E Kim
Vet Surg. 2024 Jun 8. doi: 10.1111/vsu.14118.

Objective: To evaluate the efficacy of a three-dimensional (3D)-printed, patient-specific reduction system for aligning diaphyseal tibial fractures stabilized using minimally invasive plate osteosynthesis (MIPO).

Study design: Prospective clinical trial.

Sample population: Fifteen client owned dogs.

Methods: Virtual 3D models of both pelvic limbs were created. Pin guides were designed to conform to the proximal and distal tibia. A reduction bridge was designed to align the pin guides based on the guides' spatial location. Guides were 3D printed, sterilized, and applied, in conjunction with transient application of a circular fixator, to facilitate indirect fracture realignment before plate application. Alignment of the stabilized tibiae was assessed using postoperative computed tomography scans.

Results: Mean duration required for virtual planning was 2.5 h and a mean of 50.7 h elapsed between presentation and surgery. Guide placement was accurate with minor median discrepancies in translation and frontal, sagittal, and axial plane positioning of 2.9 mm, 3.6°, 2.7°, and 6.8°, respectively. Application of the reduction system restored mean tibial length and frontal, sagittal, and axial alignment within 1.7 mm, 1.9°, 1.7°, and 4.5°, respectively, of the contralateral tibia.

Conclusion: Design and fabrication of a 3D-printed, patient-specific fracture reduction system is feasible in a relevant clinical timeline. Intraoperative pin-guide placement was reasonably accurate with minor discrepancies compared to the virtual plan. Custom 3D-printed reduction system application facilitated near-anatomic or acceptable fracture reduction in all dogs.

Clinical significance: Virtual planning and fabrication of a 3D-printing patient-specific fracture reduction system is practical and facilitated acceptable, if not near-anatomic, fracture alignment during MIPO.