Accuracy of noninvasive, single-plane fluoroscopic analysis for measurement of three-dimensional femorotibial joint poses in dogs treated by tibial plateau leveling osteotomy

Journal
Jones SC, Kim SE, Banks SA, Conrad BP, Abbasi AZ, Tremolada G, Lewis DD, Pozzi A. Am J Vet Res. 2014 May; 75 (5): 486-93.

OBJECTIVE: To compare accuracy of a noninvasive single-plane fluoroscopic analysis technique with radiostereometric analysis (RSA) for determining 3-D femorotibial poses in a canine cadaver stifle joint treated by tibial-plateau-leveling osteotomy (TPLO).

SAMPLE: Left pelvic limb from a 25-kg adult mixed-breed dog.

PROCEDURES:A CT scan of the left pelvic limb was performed. The left cranial cruciate ligament was transected, and a TPLO was performed. Radiopaque beads were implanted into the left femur and tibia, and the CT scan was repeated. Orthogonal fluoroscopic images of the left stifle joint were acquired at 5 stifle joint flexion angles ranging from 110° to 150° to simulate a gait cycle; 5 gait cycles were completed. Joint poses were calculated from the biplanar images by use of a digitally modified RSA and were compared with measurements obtained by use of hybrid implant-bone models matched to lateral-view fluoroscopic images. Single-plane measurements were performed by 2 observers and repeated 3 times by the primary observer.

RESULTS: Mean absolute differences between results of the single-plane fluoroscopic analysis and modified RSA were 0.34, 1.05, and 0.48 mm for craniocaudal, proximodistal, and mediolateral translations, respectively, and 0.56°, 0.85°, and 1.08° for flexion-extension, abduction-adduction, and internal-external rotations, respectively. Intraobserver and interobserver mean SDs did not exceed 0.59 mm for all translations and 0.93° for all rotations.

CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that single-plane fluoroscopic analysis by use of hybrid implant-bone models may be a valid, noninvasive technique for accurately measuring 3-D femorotibial poses in dogs treated with TPLO.